How Long Do We Live?
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THE MEASUREMENT OF human longevity is one of the oldest and most impor-
tant topics in demography. Estimates of life expectancy at birth (i.e., the
average age at death under current mortality conditions) are now routinely
provided by national and international statistical agencies. For example, the
United Nations Population Division publishes such estimates for all coun-
tries in the world, ranging from a low of 37 years in Sierra Leone to 80
years in Japan for the period 1995-2000 (United Nations 2001). Life ex-
pectancy at birth worldwide is estimated at 63 for males and 67 for females.

Life expectancy of a birth cohort may be calculated directly if survival
in this cohort is observed until the last person dies. Life expectancy at birth
is simply the average age at death. This calculation is unsatistactory for many
purposes, however, because it provides a selective summary of mortality
over nearly a century, an interval during which mortality conditions are
likely to have changed. Most obviously, life expectancy at birth calculated
in this way is not useful for studying mortality change over periods of less
than a century.

The study of mortality change over shorter time spans is generally based
on age-specific death rates calculated for a single year or for periods of sev-
eral consecutive years. Most life expectancy statistics in the demographic
literature are calculated from such rates by life table methods that origi-
nated with John Graunt’s study of the London bills of mortality (Graunt 1662)
and have been standard in the field for well over 100 years. They may be
referred to as period life expectancies to distinguish them from the cokort or
generational life expectancies calculated for groups of persons observed over
long time periods. Measures of cohort life expectancy are so rare, however,
that life expectancy is generally understood to mean period life expectancy.

Methods for the measurement of mortality are regarded by many de-
mographers as an all but closed subject. Age-specific death rates and life
tables have been used for so long that their validity as measures of mortal-
ity is rarely questioned. In countries experiencing high life expectancy, how-
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ever, certain empirical regularities are observed that provide a basis for re-
visiting the use of conventional methods.

In this article we argue that, for contemporary countries with high life
expectancy, the conventional approach to the measurement of longevity is
unsatisfactory whenever mortality is changing. We propose an alternative
approach and suggest on this basis that conventional calculation of period
life expectancy involves what we call a tempo bias. We present a procedure
for estimating this bias. Cohort life expectancy is not affected by this bias.

Life expectancy: The conventional approach

Period life expectancy at birth is defined as the average age at death that
would be observed for a group of persons who experience, over the course
of their lives, the age-specific death rates observed during the time period.
Formally, period life expectancy at birth at time ¢ is

0

e(t) = J’ Ua,t)da, (1)

0

where /(a,t) denotes the proportion of persons surviving to age a. The sur-
vival curve /(a,t) is in turn calculated from the age-specific death rates
U(x,t)—usually called “the force of mortality”—as

a

Ua,t) :exp(—J.[J(X,l‘)dX). (2)
0

Standard methods exist for calculating (1) and (2) from census and
vital registration data (Preston, Heuveline, and Guillot 2001; Shryock and
Siegel 1973).

How mortality changes

The level and age pattern of the force of mortality differ widely among coun-
tries and vary over time within countries. The only generalization that ap-
plies to virtually all populations is that the age pattern of mortality is U-
shaped with a minimum between ages 5 and 25.

In contemporary populations with high levels of life expectancy, how-
ever, the force of mortality has a more consistent pattern of change with
age and time, with the following key features. First, mortality is confined
almost entirely to adulthood. All but about 2 percent of newborns survive
to become adults. Second, mortality rates rise exponentially with age above
around age 30. Third, mortality tends to improve over time by a similar
factor at all adult ages.
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As a result, adult mortality rates when plotted by age on a logarithmic
scale are closely approximated by straight lines, and the lines representing
rates in different years are nearly parallel (see Figure 1 for US females in
1950 and 1995). These characteristics of adult mortality are captured by
the model

Mla,1) = p(0,1)exp(ba), 3)

where b > 0 is a parameter. Because this model embodies the familiar
Gompertz formula (Gompertz 1825), we refer to it as the Gompertz mortality
change model.

Table 1 presents estimates of the parameters ((0,t) and » for females
in France, Japan, Sweden, and the United States from 1980 to 1995. The
model is fitted to single-year age-specific mortality rates for ages 30-100
years. As expected U(0,f) declines over time in all four populations. The
value of b varies between countries, from 0.091 in the United States to 0.103
in Japan, but annual estimates of b vary little over time in each of these
countries between 1980 and 1995. The Gompertz model fits observed adult
mortality rates well, with the average variance explained (R?) near 99 percent.

FIGURE 1 Mortality rates by age, females, United States
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TABLE 1 Estimates of parameters of the Gompertz mortality change
model in selected countries, females, 1980-95

Average 1980-95

1,(1980) Ho(1995) b St. dev. b R?
France 2.63(x107°)  2.25 (x107%) 0.097 0.0010 0.987
Japan 1.58 1.26 0.103 0.0006 0.992
Sweden 2.06 1.29 0.102 0.0011 0.994
United States 4.18 3.87 0.091 0.0005 0.999

SOURCE: Death statistics from Berkeley Mortality Data Base (2002).

The Gompertz mortality change model implies that, except for the ages
immediately above zero, multiplication of the force of mortality schedule
by a constant factor (arrow A in Figure 1) is equivalent to shifting the sched-
ule left or right along the age axis (arrow B in Figure 1). Appendix A pro-
vides further details. In the analysis that follows, we assume that changes
in period life expectancy result from shifts in the schedule of the force of
mortality to higher or lower ages. Because we ignore infant and child mor-
tality, our results apply only to populations with high life expectancy.

Effect of mortality change on the population
age structure

Population change results from changes in age schedules of birth, death,
and migration rates. To focus on mortality change we consider in this and
following sections a population that experiences no migration and constant
numbers of births. For such a population, mortality change is the sole de-
terminant of changes in population size and age structure—that is, mortal-
ity decline (increase) results in an increase (decrease) in population size.

To simplify our analysis of the effects of mortality change, we further-
more focus on populations in which mortality follows a shifting Gompertz
model and in which this mortality change produces a shifting population
age structure. A shifting age structure retains its shape over time while shift-
ing to higher ages as mortality falls. We define an upwardly shifting age
structure as

N(a,t)= N(a —F(t),0) fora =F(t) (4)
and N(a,t)=B fora <F(t),

where N(a,t) denotes the density of persons at exact age a at time ¢, F(t)
denotes the amount of the shift (in years) between time 0 and time ¢, and B
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denotes the (constant) annual number of births. Figure 2 plots examples of
the age structure N(a,t) for US females in 1970 and 1995; the shift over this
25-year period F(25) is about 4 years.

A population with a shifting population age structure has several prop-
erties:

1) Suppose that the population is stationary up to some time ¢ = 0, so
that N(a,0) = Bl(a,0), where /(a,0) denotes the survival function for the
initial stationary population. A decline in mortality between time 0 and time
t > 0 shifts the age distribution up the age axis by F(t) years and results in
an increase in population size. Let ¢*(a,t) denote the survival function for
the stationary population with age distribution N(a,t); then ¢*(a,t) is a shifted
version of /(a4,0) and

N(a,t)= Bl (a,1). (5)

Because this relation holds for every time ¢, the population will become
immediately stationary whenever mortality stops changing. Appendix B pro-
vides further details.

FIGURE 2 Simulated age structure of a population of US females in 1970
and 1995: Cohorts of 1000 births subjected to past observed adult mortality
rates and no migration
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2) In stationary populations with age structure N(q,?), the life expect-
ancy at birth equals ¢,(7), which can be calculated from the survival func-
tion ¢*(a,t) with (1).!

3) The period mean age at death A(f), calculated from the age distribu-
tion of observed deaths, equals ¢ (), as shown in Appendix B: A(t) = ¢,(f).
We therefore refer to e () as the mean age at death.

4) Population size P(f) can be calculated from (5) as

00 00

P(t) = I N(a,t)yda = I Bl (a,t)da = Be'(t) = BA(t). (6)
0

0

Thus the familiar stationary population relationship in which total popula-
tion is the product of the annual number of births and mean age at death
holds at every point in time, even when mortality is changing.

5) In a stationary population, A(f) = ¢,(t) = ¢, (). However, as we show
next, when mortality changes and the population age structure shifts, the mean
age at death A(7) = ¢ (¢) differs from the conventional life expectancy e (7).

Changing numbers of deaths

Suppose that a population is stationary with life expectancy at birth and mean
age at death of 75 years before the beginning of some year T; that life expect-
ancy and mean age at death increase to 75.3 years during this year; and that
the population is stationary thereafter. It follows from (6) that the total num-
ber of persons in this population rises from 75B to 75.3B persons during 7.

Because the population is closed to migration and annual numbers of
births are constant, this population growth of 0.3B persons during year T
necessarily results from a decline in the number of deaths, from D = B deaths
annually before Tto D, = B—0.3B= (1 - 0.3)B deaths during 7. More gener-
ally, if the mean age at death rises by fyears during T,

D, =(1-f)B. (7)

This scenario presents two striking features. First, during year T a small
increase (0.4 percent) in the mean age at death is associated with a large de-
crease (30 percent) in the number of deaths. Second, the reduction in deaths is
temporary. It ends as soon as the mean age at death stops rising. The annual
number of deaths after the year of change is the same as before—a necessary
consequence of the assumptions that the population is closed to migration and
that births are constant. The reduction in the number of deaths during T'is due
not to a higher mean age at death, but to a rising mean age at death.
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In this simple illustration mortality change is confined to a single year,
but similar results hold when mortality changes continuously over any pe-
riod of time?*:

U]
D(r)=(1 it )B. (8)
This equation, which generalizes (7), shows that the observed number of
deaths is a function of the rate of change in the mean age at death.

Applying (8) in a population with the trend in the mean age at death
assumed in the earlier illustration (i.e. e (f) rising linearly from 75 to 75.3
in year 7, but constant otherwise) and with B = 1000 results in the trend in
total number of deaths plotted in Figure 3. Since de ()/dt = 0.3 during year
T and 0 before T and after T+1, it follows that the number (strictly the den-
sity) of deaths D(f) declines from 1000 to 700 per year at the beginning of
year T, remains at 700 during 7, and rises from 700 to 1000 per year at the
end of year T. Large sudden swings in the number of deaths accompany the
modest and steady rise in the mean age at death.

FIGURE 3 Trends in total number of deaths and life expectancy,
hypothetical population, changing mortality
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Changing crude death rates

Dividing both sides of (8) by population size and substituting (6) yields the
crude death rate:

_dey (1)
dt

CDR(t) = D(t)/P(t) = (1 ) eo(t). (9)

This demonstrates that the crude death rate is determined by two factors.
First, it is inversely related to the mean age at death, which is as expected
in a population with a constant flow of births and no migration. Second,
the crude death rate depends on the rate of change in the mean age at death,
as was the case for the number of deaths. This effect is unexpected and not
predicted by conventional demographic theory.

Following a long tradition of research on similar effects in the study
of fertility (Ryder 1964, 1983; Bongaarts and Feeney 1998), we refer to this
second factor as a tempo effect. With deaths and mortality, as with births
and fertility, a rising (falling) mean age of persons at the occurrence of an
event results in a temporary decline (increase) in numbers of events during
the period of change.

Observed force of mortality and life expectancy

Let ' (a,t) be the force of mortality that produces the survival function ¢*(a,t)
(i.e. U (a,t) =—(00 (a,t)/0a)ll (a,t)); then as shown in Appendix B:

de. .
pa,n= (1 —%”)u (@.1). (10)

This fundamental identity, which generalizes (8) and (9), shows that the
observed force of mortality u(a,t) falls below w'(a,f) at all ages when the
mean age at death is increasing and rises above U'(a,t) at all ages when the
mean age at death is decreasing.

This result allows us to say how the conventionally calculated life ex-
pectancy e (f) changes in the scenario summarized in Figure 3. During the
year of change, ¢,() rises at the rate of de (t)/dt = 0.3 years per year. From
(10), then, the observed force of mortality is uniformly 30 percent lower
than p'(a,t). The following section shows that this 30 percent difference in
the force of mortality corresponds to a difference of about 3 years between
the mean age at death and the conventional life expectancy at birth.

Figure 3 plots the resulting trend of ¢ (¢) and ¢ (). Whereas the former
rises linearly from 75 to 75.3 years, the latter rises discontinuously from 75
to roughly 78 years at the beginning of the year of mortality change and



JOHN BONGAARTS / GRIFFITH FEENEY 21

drops discontinuously to 75.3 at the end of the year. Thus the trend of the
conventional life expectancy at birth e (¢) is strikingly different from the
known trend in the mean age at death. We conclude that e () is distorted
and that e (f) provides an unbiased estimate of the mean age at death im-
plied by current mortality conditions.

Tempo bias

In countries with high life expectancy, the mean age at death e, (¢) is, we
have argued, a more suitable period measure of the average life span than
e,(f)—the conventional period measure of life span. For these countries,
therefore, we define the tempo bias of e (t) as the difference between e (1)
and e;(¢). As shown in Appendix A, under the shifting Gompertz mortality
change model this tempo bias, S(¢), can be estimated as

. de;
S(t) = ey(t) —e(t) = —%ln(l —%“)). (11)

That is, when e(f) rises at a rate of f(7) = de (t)/dt per year, the convention-
ally estimated life expectancy e () is —In(1-f(¢))/b higher than the mean age
at death e (1).

We next present several illustrations of the size of this bias.

If f(¢) is small, S(¢) may be approximated by f(¢)/b. If the mean age at
death rises at a rate of 0.1 years per year, for example, and » has a typical
value of 0.1, the tempo effect will be approximately one year. Furthermore,
if e (¢) rises linearly, f{(#) = fis constant and e (f) and ¢/ (¢) both rise at this rate. In
this case e, (t) exceeds e (f) when fis positive (mean age at death is rising) and
falls below e (f) when fis negative (mean age at death is declining).

Figure 4 plots five scenarios, each with a different rate of change fin
the mean age at death. Scenario 1 in this figure assumes a rapid rise in the
mean age at death with f=0.2 (line A B). As a result, the tempo effect is
constant at 2 years and the observed life expectancy is higher than e/ (¢) by
2 years. In scenario 5 the mean age at death is assumed to drop at a rapid
rate f=-0.2 years per year (line A_B,). In this case the tempo effect equals -2
years and the observed life expectancy is two years lower than e;(7). The
other three scenarios plotted in Figure 4 assume, respectively, a slow rise (f=
0.1), no change (f=0), and a slow decline (f=-0.1) in e,(f).

In the preceding illustration the rate of change in the mean age at
death fis assumed constant, but this is not the case in general. Figure 5
plots the relationship between e () and e (f) when f(f) varies over time. In
this figure the mean age at death rises between points A and B and again
between points C and D, i.e., f(#)>0 and e (f) exceeds e (f). Between points
B and C the mean age at death declines and f{(#)<0 so that ¢ (?) is lower than
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FIGURE 4 Hypothetical trends in mean age at death and observed life
expectancy
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e,(t). The implication of this pattern is that minor fluctuations in the mean
age at death lead to substantially larger fluctuations in the conventional life
expectancy e,(t). This phenomenon may partially explain the fluctuations
in ¢ (f) observed since the late 1980s in Russia and a few other countries in
Eastern Europe.

FIGURE 5 Hypothetical trends in mean age at death and observed life
expectancy, variable rate of mortality change
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Estimating unbiased life expectancy

Our main objective is to estimate the unbiased life expectancy at birth e (z).
This cannot be calculated directly with (1) and (2) because u'(a,?) is in gen-
eral not observable. However, we can calculate e (f) and estimate the value
of the parameter b from observed death rates. These known variables are
related to e (7) with the differential equation

eo<r>=e0<t>—%1n<1—%>, (12)

which is obtained by rearranging (11). This equation may be solved for e(7)
by standard numerical methods.’ The value of b is estimated by fitting a
Gompertz model to observed age-specific mortality rates, as in Table 1.

This estimation procedure was applied to annual data for females in
France, Japan, Sweden, and the United States for the period 1980 to 1995.
The results are summarized in Table 2 and in Figures 6 and 7. The average
tempo bias in life expectancy for the 15-year period was positive and sub-
stantial: 2.3 years for France, 3.3 years for Japan, and 1.6 years for Sweden
and the United States.

Alternative methods may be used to estimate unbiased life expectancy,
depending on the nature and detail of available data. Where age-specific
death rates by single years are available for a century or more, cohort mor-
tality life tables can be used to remove the effects on the current population
age structure of past fluctuations in the size of birth cohorts, of migration,
and of mortality below age 30. If adult mortality in the past has followed a
shifting Gompertz pattern resulting in a shifting population age structure,
then unbiased life expectancy may be calculated in various ways, most sim-
ply by dividing the total population size at any given time by the annual

TABLE 2 Life table estimates of life expectancy at birth (with no
mortality below age 30), mean age at death, rate of change in the
mean age at death, and the estimated average tempo bias for selected
countries, females, 1980-95

Life expectancy Mean age at death  Rate of change, Tempo bias
(years), ey(t) (years), eq(t) f(t) (years), S(t)
1980 1995 1980 1995 1980-95 1980-95
France 79.9 82.8 77.7 80.7 0.20 2.3
Japan 79.9 83.6 76.6 80.9 0.29 3.3
Sweden 79.9 82.1 78.3 80.6 0.15 1.6
United States 79.2 80.2 77.2 79.2 0.14 1.6

SOURCE: Death statistics from Berkeley Mortality Data Base (2002).
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FIGURE 6 Observed female life expectancy at birth and estimated mean
age at death, United States, 1980-95 (no mortality under age 30)

82.5
Life expectancy
80 - (life table estimates)
Tempo bias
4]
]
L
>
775 I Mean age at death
75 1 1 1
1970 1980 1990 2000

FIGURE 7 Observed female life expectancy at birth and estimated mean
age at death, Japan, 1980-95 (no mortality under age 30)
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number of births, that is, by using formula (6). We are aware of only three
populations for which such long time series of age-specific death rates are
available: Sweden, the United States, and France. The average tempo ef-
fects for females from 1980 to 1995 calculated with this method are 1.6
years for Sweden, 1.7 years for the United States, and 2.5 years for France.
These estimates are close to those presented in Table 2.

Because these estimates ignore mortality under age 30, the tempo ef-
fects on the observed life expectancy at birth, which includes mortality un-
der age 30, are slightly smaller (by about 2 to 3 percent).

Conclusion

The principles underlying methods for the study of mortality have tended
to be accepted without question. In particular, age-specific death rates and
life table measures of period mortality calculated from them are widely re-
garded as beyond methodological reproach.

We have argued that for countries with high life expectancies, in which
nearly all mortality occurs beyond young adulthood, period age-specific
death rates are subject to a significant bias whenever these rates are chang-
ing. When the mean age at death rises, the rates are biased downward and
when the mean age at death falls, they are biased upward. Following re-
lated work on the measurement of fertility, we refer to these as mortality
tempo biases. Although our analysis has focused only on countries with
high life expectancy, we expect that tempo biases also exist for adult mor-
tality in countries with low life expectancy.

Period life expectancies calculated from age-specific death rates by life
table methods are biased as well, and we have provided methods for deter-
mining the magnitude of the bias. The estimated average tempo effect in
conventional life expectancy for females ranges from 1.6 years in the United
States and Sweden to 3.3 years in Japan for the period 1980-95.

Although many of our arguments are theoretical, they are based on em-
pirical regularities in the pattern of mortality change in countries with high life
expectancies, specifically the tendency for the age pattern of mortality rates
above young adulthood to conform closely to a shifting Gompertz model. We
do not claim that the Gompertz mortality model fits the data perfectly or that
the methods proposed yield perfect results. We do think that our procedures
provide a substantial improvement over conventional methods.

Our main finding is that the conventional calculation of period life
expectancy at birth gives a misleading indication of how long we live. We
are not living as long as we thought we were. This result is significant in its
own right, but it also has implications for the study of past and future trends
in life expectancy, particularly in the short term.
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Appendix A

The Gompertz mortality change model (equation 3) implies that, except for the
ages immediately above zero, multiplication of the force of mortality schedule by
a constant factor is equivalent to shifting the schedule left or right along the age
axis. Multiplying u(a,t) by k<1 is equivalent to shifting the schedule to the right by

S(k) = _h;(k)

(1a)

years, i.e.,
M(a,t)k = pi(a = S(k), 1) (2a)

for a = S(k). Formula (1a) is implied by formula (2a). These formulas also apply for
k>1, with the increase in the force of mortality schedule equivalent to shifting to
the left.

In view of the multiplicative relationship between p'(a,t) and p(a,t) given by
(10) and with p'(a,t) conforming to a shifting Gompertz mortality change model,
U(a,t) can be considered to be a shifted version of u'(a,t). Specifically, substitution
of the multiplication factor

o de(t)
=( — ) (3a)
in (1a) yields
1 de, (1)
S( = =7 In(L =25, (4a)

i.e, H(a,t) is the same as U'(a,t) shifted along the age axis by S(¢) years. Shifting
U(a,t) up by S(t) years, with p(a,t) = 0 for a < S(¢), will shift ¢(a,t) up by S(¢) years
as well, with ¢(a,t) = 1.0 for a < S(f), and this in turn will increase e (f) by S(z)
years, so that e (t) = e;(1) + S(t).

Appendix B

Consider a population closed to migration, experiencing constant births at the rate
of B births annually, and with the density of persons at exact age a and time ¢

a

N(a,t) :Bexp(—Iu*(X,t)dX), (1b)
0
so that
. _ —ON(a,t)/Oa
u (a,l)—W~ (2b)

The right-hand side of (2b) is the rate of change with increasing age in the
number of persons at exact age a at time ¢. The left-hand side may be interpreted
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as the force of mortality function for the stationary population with age distribu-
tion N(a,t).

Assume that population changes over time (resulting from mortality decline
only) occur through shifts in N(a,?) to higher ages. Let the amount of this shift (in
years) between time 0 and time ¢ be F(¢), with

N(a,t)=B fora <F(t)

and N(a,) = N(a - F(t),0) fora >F(t).

(3b)

Given (2b), this assumption implies that changes in y'(a,t) also occur through
shifts to higher ages with p'(a,t) = 0 for a < F(t) and

U(a,t)=p (a—F(),0) fora=F(). (4b)

The age-specific population growth rate in this population equals

ON(a,t) dIn[Bexp( Iu (x,t)dx)] —(?J'/J*(x,t) dx
r(a f) — ot — 0"1nN(a,t) — 0 - D (Sb)
’ N(a,t) ot ot ot
Substitution of (4b) in (5b) gives
P 5" F(0)
y=—= -— (y,0)d
&J 5 _O[u (7,0) dy
dF(t) - (6b)
L0 1 a-r,0 :%u (@),

As shown by Preston and Coale (1982) and Arthur and Vaupel (1984) the age-
specific growth rate in this population can also be calculated as

r(a,t)= W' (a,t) - Wa,t). (7b)

Substitution of (6b) in (7b) and rearranging yields

Ha,t) = [ (a,t) = r(a,t) =(1 ———) (a,1). (8b)

Equation (4b) implies that F(t) = ¢,(t) —e,(0) and therefore

(9b)
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Substitution of (9b) in (8b) yields

=0 =220 o, (10b)
Equation (10b) implies that, as ('(a,t) and N(a,t) shift to higher or lower ages, the
observed force of mortality shifts with them. In addition to this shifting, the value
of (a,t) differs from p'(a,f) by a proportion (1 — de,(7)/dt). As noted in Appendix
A, this last proportional relationship can be interpreted as an additional shift.
The results above are general in the sense that they do not assume the Gompertz
mortality schedule. If y'(a,t) follows a shifting Gompertz mortality change model,
however, with t'(a,t) = 0 for a < F(t) and

U(a,t)= ' (0,t)exp(ba) fora>F(t), (11Db)

then substitution of (11b) in (10b) yields

p(a,1y=(1 - %)u%o,nexpwa). (12b)
Define
ko =0 -2 0., (13b)

Substitution of (13b) in (12b) gives
U(a,t) = u(0,t)exp(ba) fora > F(t). (14b)

That is, the observed force of mortality follows a shifting Gompertz mortality change
model (14b) with the same slope parameter » but with intercept u(0,t) (defined by
(13b)) instead of u'(0,1).

Finally, it should be noted that the mean age at death at time ¢, A(¢), is calcu-
lated from the density of deaths d(a,t) = u(a,t)N(a,t) as

o o

A(t) = I ad(a,t)da | I d(a,t)da = J’ apl(a,t)N(a,t)da | J’ HanN(@tda.  (5p)
0 0

0 0

Substitution of (10b) and (5) in (15b) gives

A(t)= [ay’(a,t)N(a,t)da [ J’ W (a,t)N(a,t)da
0

apl (a,1)0 (a,t)da | I W (a, 1)l (a,t)da
0

(16b)

al (a,t)0"(a,t)da

1
Om*ok_ﬂgoagoag

).
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Notes

The development of the ideas in this article
began in 1999 after completion of our study
of the tempo effects on fertility (Bongaarts and
Feeney 1998). Over the past year we have ben-
efited greatly from discussions of the mortal-
ity tempo effect with James W. Vaupel.

1 A life span measure very similar to e;(t)
was introduced by Brouard (1986) and de-
veloped systematically by Guillot (1999) in
connection with his analysis of changing
population sex ratios. Neither author iden-
tifies the tempo bias in the standard calcula-
tion of life expectancy at birth, however, or
regards this life span measure as a way of
calculating the tempo bias.

2 From (6) it follows that the instanta-
neous population change equals dP(t)/dt =
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